Skip to content
Home » 2025 | June » June 2025 Cont. References

June 2025 Cont. References

    Tauroursodeoxycholic Acid (TUDCA) And Protective Role Against Neurodegeneration

    Authors: Devin Miles, ND and Elizabeth Sutherland, ND

    1. Zangerolamo L, Vettorazzi JF, Rosa LRO, et al. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021 May 1;272:119252. doi: 10.1016/j.lfs.2021.119252. https://www.sciencedirect.com/science/article/abs/pii/S002432052100237X
    2. Kusaczuk, M. Tauroursodeoxycholate-bile acid with chaperoning activity: molecular and cellular effects and therapeutic perspectives. Cells. 2019 Nov 20;8(12):1471. doi: 10.3390/cells8121471. https://pubmed.ncbi.nlm.nih.gov/31757001/
    3. Özcan U, Yilmaz E, Özcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006 Aug 25;313(5790):1137-40. doi: 10.1126/science.1128294 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741373/
    4. Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnol Bioeng. 2011 Dec;108(12):2777-93. doi: 10.1002/bit.23282. https://pubmed.ncbi.nlm.nih.gov/21809331/
    5. Ben Mosbah I, Alfany-Fernández I, Martel C, et al. Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis. 2010 Jul 8;1(7):e52. doi: 10.1038/cddis.2010.29. https://pubmed.ncbi.nlm.nih.gov/21364657/
    6. Walsh LK, Restaino RM, Neuringer M, et al. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load. Clin Sci (Lond). 2016 Nov 1;130(21):1881-8. doi: 10.1042/CS20160501. https://pubmed.ncbi.nlm.nih.gov/27503949/
    7. Hurley MJ, Bates R, Macnaughtan J, Schapira AHV. Bile acids and neurological disease. Pharmacol Ther. 2022 Dec;240:108311. doi: 10.1016/j.pharmthera.2022.108311. https://www.sciencedirect.com/science/article/pii/S0163725822002054
    8. Loera-Valencia R, Vazquez-Juarez E, Muñoz A, Gerenu G, Gómez-Galán M, Lindskog M, DeFelipe J, Cedazo-Minguez A, Merino-Serrais P. High levels of 27-hydroxycholesterol results in synaptic plasticity alterations in the hippocampus. Sci Rep. 2021 Feb 12;11(1):3736. doi: 10.1038/s41598-021-83008-3. https://www.nature.com/articles/s41598-021-83008-3
    9. Montesinos J, Guardia-Laguarta C, Area-Gomez E. The fat brain. Curr Opin Clin Nutr Metab Care. 2020 Mar;23(2):68-75. doi: 10.1097/MCO.0000000000000634 https://journals.lww.com/co-clinicalnutrition/Abstract/2020/03000/The_fat_brain.3.aspx
    10. Chiang JYL, Ferrell JM. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu Rev Nutr. 2019 Aug 21;39:175-200. doi: 10.1146/annurev-nutr-082018-124344. https://www.annualreviews.org/doi/abs/10.1146/annurev-nutr-082018-124344
    11. Song H, Liu J, Wang L, et al. Tauroursodeoxycholic acid: a bile acid that may be used for the prevention and treatment of Alzheimer’s disease. Front Neurosci. 2024 Feb 19;18:1348844. doi: 10.3389/fnins.2024.1348844. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909943/
    12. Zangerolamo L, Carvalho M, Barssotti L, et al. The bile acid TUDCA reduces age-related hyperinsulinemia in mice. Sci Rep. 2022 Dec 23;12(1):22273. doi: 10.1038/s41598-022-26915-3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789133/
    13. Conway J, A Duggal N. Ageing of the gut microbiome: potential influences on immune senescence and inflammageing. Ageing Res Rev. 2021 Jul;68:101323. doi: 10.1016/j.arr.2021.101323 https://www.sciencedirect.com/science/article/abs/pii/S1568163721000702
    14. Khalaf K, Tornese P, Cocco A, Albanese A. Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener. 2022 Jun 4;11(1):33. doi: 10.1186/s40035-022-00307-z. https://translationalneurodegeneration.biomedcentral.com/articles/10.1186/s40035-022-00307-z
    15. Nunes VS, da Silva Ferreira G, Quintão ECR. Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging (Albany NY). 2022 Feb 7;14(3):1549-1561. doi: 10.18632/aging.203880. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8876915/
    16. Monteiro-Cardoso VF, Corlianò M, Singaraja RR. Bile Acids: A Communication Channel in the Gut-Brain Axis. Neuromolecular Med. 2021 Mar;23(1):99-117. doi: 10.1007/s12017-020-08625-z. https://link.springer.com/article/10.1007/s12017-020-08625-z
    17. Mahmoudian Dehkordi S, Arnold M, Nho K, et al. Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium. Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement. 2019 Jan;15(1):76-92. doi: 10.1016/j.jalz.2018.07.217. https://pubmed.ncbi.nlm.nih.gov/30337151/
    18. Keene CD, Rodrigues CM, Eich T, et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol. 2001 Oct;171(2):351-60. doi: 10.1006/exnr.2001.7755. https://pubmed.ncbi.nlm.nih.gov/11573988/
    19. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017 Nov 7;11:617. doi: 10.3389/fnins.2017.00617. https://pubmed.ncbi.nlm.nih.gov/29163019/
    20. Ramalho RM, Borralho PM, Castro RE, et al. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J Neurochem. 2006 Sep;98(5):1610-8. doi: 10.1111/j.1471-4159.2006.04007.x.  https://pubmed.ncbi.nlm.nih.gov/16923170/
    21. Ramalho RM, Viana RJ, Castro RE, et al. Apoptosis in transgenic mice expressing the P301L mutated form of human tau. Mol Med. 2008 May-Jun;14(5-6):309-17. doi: 10.2119/2007-00133.Ramalho. https://pubmed.ncbi.nlm.nih.gov/18368144/
    22. Ramalho RM, Ribeiro PS, Solá S, et al. Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells. J Neurochem. 2004 Aug;90(3):567-75. doi: 10.1111/j.1471-4159.2004.02517.x. https://pubmed.ncbi.nlm.nih.gov/15255934/
    23. Rodrigues CM, Solá S, Brito MA, et al. Amyloid beta-peptide disrupts mitochondrial membrane lipid and protein structure: protective role of tauroursodeoxycholate. Biochem Biophys Res Commun. 2001 Feb 23;281(2):468-74. doi: 10.1006/bbrc.2001.4370. https://pubmed.ncbi.nlm.nih.gov/11181071/
    24. Duan WM, Rodrigues CM, Zhao LR, et al. Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant. 2002;11(3):195-205.  https://pubmed.ncbi.nlm.nih.gov/12075985/
    25. Keene CD, Rodrigues CM, Eich T, et al. A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol. 2001 Oct;171(2):351-60. doi: 10.1006/exnr.2001.7755 https://www.sciencedirect.com/science/article/abs/pii/S0014488601977556?via%3Dihub
    26. Keene CD, Rodrigues CM, Eich T, et al. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10671-6. doi: 10.1073/pnas.162362299. https://pubmed.ncbi.nlm.nih.gov/12149470/
    27. Elia AE, Lalli S, Monsurrò MR, et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur J Neurol. 2016 Jan;23(1):45-52. doi: 10.1111/ene.12664. https://pubmed.ncbi.nlm.nih.gov/25664595/
    28. Grant SM, DeMorrow S. Bile Acid Signaling in Neurodegenerative and Neurological Disorders. Int J Mol Sci. 2020 Aug 20;21(17):5982. doi: 10.3390/ijms21175982. https://www.mdpi.com/1422-0067/21/17/5982/htm
    29. Zangerolamo L, Vettorazzi JF, Rosa LRO, et al. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci. 2021 May 1;272:119252. doi: 10.1016/j.lfs.2021.119252. https://pubmed.ncbi.nlm.nih.gov/33636170/
    30. Bhargava P, Smith MD, Mische L, et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest. 2020 Jul 1;130(7):3467-3482. doi: 10.1172/JCI129401. https://pubmed.ncbi.nlm.nih.gov/32182223/
    31. Zhou W, Gallagher A, Hong DP, et al. At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation. J Mol Biol. 2009 May 8;388(3):597-610. doi: 10.1016/j.jmb.2009.03.053. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719782/
    32. Cuevas E, Burks S, Raymick J, et al. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson’s disease. Nutr Neurosci. 2022 Jul;25(7):1374-1391. doi: 10.1080/1028415X.2020.1859729. https://pubmed.ncbi.nlm.nih.gov/33345721/
    33. Vang S, Longley K, Steer CJ, Low WC. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med. 2014 May;3(3):58-69. doi: 10.7453/gahmj.2014.017.  https://pubmed.ncbi.nlm.nih.gov/24891994/
    34. Gaspar JM, Martins A, Cruz R, et al. Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience. 2013 Dec 3;253:380-8. doi: 10.1016/j.neuroscience.2013.08.053. https://pubmed.ncbi.nlm.nih.gov/24012838/
    35. Yoon YM, Kim S, Han YS, et al. TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrPC. Redox Biol. 2019 Apr;22:101144. doi: 10.1016/j.redox.2019.101144. https://pubmed.ncbi.nlm.nih.gov/30785084/
    36. Romero-Ramírez L, Nieto-Sampedro M, Yanguas-Casás N. Tauroursodeoxycholic acid: more than just a neuroprotective bile conjugate. Neural Regen Res. 2017 Jan;12(1):62-63. doi: 10.4103/1673-5374.198979. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319238/

    Your Cart

    No Item Found
    Subtotal $0.00
    Shipping $0.00
    Tax $0.00
    Total $0.00
    0