Most of the World Can’t ‘Buy Local’ – For Food at Least

Node Smith, ND

Globalization has revolutionized food production and consumption in recent decades and cultivation has become more efficient. As a result, diets have diversified and food availability has increased in various parts of the globe. However, it has also led to a situation where the majority of the world population live in countries that are dependent on, at least partially, imported food. This can intensify vulnerabilities during any kind of global crisis, such as the current COVID-19 pandemic, as global food supply chains are disrupted.

The majority of the world population live in countries that are dependent on, at least partially, imported food

Aalto University dissertation researcher, Pekka Kinnunen, says: “There are big differences between different areas and the local foliage. For example, in Europe and North America, temperate crops, such as wheat, can be obtained mostly within a radius of 500 kilometres. In comparison, the global average is about 3,800 kilometres.”

Recent study modeled minimum distance between crop production and consumption that humans around the world would need to meet their food demand

The recent study, published in Nature Food and led by Kinnunen, modeled the minimum distance between crop production and consumption that humans around the world would need to be able to meet their food demand. The study was conducted in collaboration with the University of Columbia, the University of California, the Australian National University and the University of Göttningen. The study factored in six key crop groups for humans: temperate cereals (wheat, barley, rye), rice, corn, tropical grains (millet, sorghum), tropical roots (cassava) and pulses. The researchers modelled globally the distances between production and the consumer for both normal production conditions and scenarios where production chains become more efficient due to reduced food waste and improved farming methods.

It was shown that 27% of the world’s population could get their temperate cereal grains within a radius of fewer than 100 kilometres. The share was 22% for tropical cereals, 28% for rice and 27% for pulses. In the case of maize and tropical roots, the proportion was only 11-16%, which Kinnunen says displays the difficulty of relying solely on local resources.

Foodsheds as areas of self-sufficiency

“We defined foodsheds as areas within which food production could be self-sufficient. In addition to food production and demand, food fences describe the impact of transport infrastructure on where food could be obtained,” Kinnunen explains.

The study also showed that foodsheds are mostly relatively compact areas for individual crops. When crops are looked at as a whole, foodsheds formed larger areas, spanning the globe. This indicates that the diversity of our current diets creates global, complex dependencies.

According to Associate professor Matti Kummu, who was also involved in the study, the results clearly show that local production alone cannot meet the demand for food; at least not with current production methods and consumption habits. Increasing the share of effectively managed domestic production would probably reduce both food waste and greenhouse gas emissions. However, at the same time, it could lead to new problems such as water pollution and water scarcity in very densely populated areas, as well as vulnerabilities during such occurrences as poor harvests or large-scale migration.

“The ongoing COVID-19 epidemic emphasises the importance of self-sufficiency and local food production. It would be important also to assess the risks that dependence on imported agricultural inputs such as animal feed proteins, fertilisers and energy, might cause,” says Kummu.

Kummu and Kinnunen work in Water and Development Research Group at Aalto School of Engineering. The group focuses on the sustainability of water resources, especially in the context of water used in food production. Read more: https://wdrg.aalto.fi

1. Pekka Kinnunen, Joseph H. A. Guillaume, Maija Taka, Paolo D’Odorico, Stefan Siebert, Michael J. Puma, Mika Jalava, Matti Kummu. Local food crop production can fulfil demand for less than one-third of the population. Nature Food, 2020; 1 (4): 229 DOI: 10.1038/s43016-020-0060-7


Node Smith, ND, is a naturopathic physician in Humboldt, Saskatchewan and associate editor and continuing education director for NDNR. His mission is serving relationships that support the process of transformation, and that ultimately lead to healthier people, businesses and communities. His primary therapeutic tools include counselling, homeopathy, diet and the use of cold water combined with exercise. Node considers health to be a reflection of the relationships a person or a business has with themselves, with God and with those around them. In order to cure disease and to heal, these relationships must be specifically considered. Node has worked intimately with many groups and organizations within the naturopathic profession, and helped found the non-profit, Association for Naturopathic Revitalization (ANR), which works to promote and facilitate experiential education in vitalism.

Scroll to Top